Causal inference in statistics: An overview

نویسنده

  • Judea Pearl
چکیده

This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called “causal effects” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret,” “attribution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Statistics of Causal Inference: The View from Political Methodology

Many areas of political science focus on causal questions. Evidence from statistical analyses are often used to make the case for causal relationships. While statistical evidence can help establish causal relationships, it can also provide strong evidence of causality where none exists. In this essay, I provide an overview of the statistics of causal inference. Instead of focusing on statistica...

متن کامل

The Statistics of Causal Inference: A View from Political Methodology

Many areas of political science focus on causal questions. Evidence from statistical analyses is often used to make the case for causal relationships. While statistical analyses can help establish causal relationships, it can also provide strong evidence of causality where none exists. In this essay, I provide an overview of the statistics of causal inference. Instead of focusing on specific st...

متن کامل

Causal Inference in Statistics and the Quantitative Sciences

Causal inference attempts to uncover the structure of the data and eliminate all non-causative explanations for an observed association. The goal of most, if not all, statistical inference is to uncover causal relationships. However it is not in general possible to conclude causality from a standard statistical inference procedure, it is merely possible to conclude that the observed association...

متن کامل

Functional Data Analysis, Causal Inference and Brain Connectivity

Functional data analysis (FDA) and causal inference are two areas that have received substantial interest in the statistics literature lately. However, to date, both remain relatively underutilized in the neuroimaging community. This talk illustrates several neuroimaging applications in which both FDA and causal inference promise to play an important role. We conclude with the introduction of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009